检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学智能系统与决策研究所工业控制技术国家重点实验室,杭州310027
出 处:《分析化学》2006年第8期1091-1095,共5页Chinese Journal of Analytical Chemistry
基 金:国家973基金资助项目(No.2002CB312200)
摘 要:为提高水质参数总有机碳(TOC)的紫外吸收光谱分析的预测精度,提出一种基于Boosting理论的迭代式回归建模算法,并根据统计学习理论提出一种新的迭代停止判据,可有效防止过拟合,显著提高模型预测精度。为评估所提算法的性能,分别采用本算法和3种常用的光谱分析方法,即偏最小二乘、主成分回归和人工神经网络,对自行研制的紫外光谱水质分析仪实测的一组数据进行了建模和预测。计算结果表明:相对于其他3种方法,本算法具有生成的模型预测精度高的显著优势。A novel iterative regression modeling method, boosting partial least squares (BPLS) , based on boosting theory was proposed. It was used for improving the prediction precision of ultraviolet (UV) spectral model of water quality parameter total organic carbon (TOC). And a new stopping criterion of iterations according to statistical learning theory was developed for BPLS to effectively avoid overfitting. With the new stopping criterion, BPLS has the advantages of notable improvement of prediction performance and easy computation. To evaluate the performance of the proposed method, a set of TOC-UV spectral data was measured by a self-developed UV spectroscopic water quality analyzer, and this method and other three common approaches in spectral analysis, such as partial least squares, principal component regression and artificial neural network, were used in modeling and prediction experiments respectively. The experimental results show that BPLS has the better prediction precision compared with other three conventional methods.
关 键 词:水质分析 紫外光谱 总有机碳 Boosting-偏最小二乘
分 类 号:X832[环境科学与工程—环境工程] O657.32[理学—分析化学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.79.2