SVM与规则相结合的中文地名自动识别  被引量:32

Identifying Chinese Place Names Based on Support Vector Machines and Rules

在线阅读下载全文

作  者:李丽双[1] 黄德根[1] 陈春荣[1] 杨元生[1] 

机构地区:[1]大连理工大学计算机科学与工程系,辽宁大连116024

出  处:《中文信息学报》2006年第5期51-57,共7页Journal of Chinese Information Processing

基  金:国家自然科学基金资助项目(60373095;60373096)

摘  要:在分析中文文本中地名特点的基础上,提出了一种支持向量机(SVM)与规则相结合的中文地名自动识别方法:按字抽取特征向量的属性,然后将这些属性转换成二进制向量并建立训练集,采用多项式Kernel函数,得到SVM识别地名的机器学习模型;通过对错误识别结果的分析,构建规则库对识别结果进行后处理,弥补了机器学习模型获取知识不够全面导致召回率偏低的不足。实验表明,用SVM与规则相结合的机制识别中文文本中的地名是有效的:系统开式召回率、精确率和F-值分别达89.57%、93.52%和91.50%。By analyzing the characteristics of place names in Chinese texts, a method of automatic recognition of Chinese place names is presented, which combining support vector machines (SVMs) with rules, Firstly, feature vectors based on characters are extracted, and transferred into binary vectors. A training set is established, and the machine learning models for automatic identification of Chinese place names are obtained using polynomial kernel functions. Then, through careful error analysis, a rulebase is constructed and a post -processing step based on it is used, to overeome the shortcoming of low recall of machine learning model. The results show that the method is efficient for identifying Chinese place names. In open test, the recall, precision and F-measure reach 89. 57% , 93.52% and 91.50% respectively.

关 键 词:计算机应用 中文信息处理 中文地名识别 支持向量机 机器学习 基于规则的后处理 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象