A NONLINEAR THERMOCAPILLARY MIGRATION OF DROPLETS DUE TO DEPENDENCE OF PHYSICAL PROPERTIES ON TEMPERATURE  

A NONLINEAR THERMOCAPILLARY MIGRATION OF DROPLETS DUE TO DEPENDENCE OF PHYSICAL PROPERTIES ON TEMPERATURE

在线阅读下载全文

作  者:SUN Ren 

机构地区:[1]Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai 200240, China

出  处:《Journal of Hydrodynamics》2006年第4期469-474,共6页水动力学研究与进展B辑(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No: 10372060).

摘  要:A slow thermocapillary migration of a droplet at vanishingly small Reynolds and Marangoni numbers was theoretically investigated. A force on the droplet released in another liquid subjected to arbitrary configuration of the gravitational field and an imposed thermal gradient for the case of constant liquid properties was derived using the general solutions given by Lamb. A solution to the migration was thereby obtained, which corresponds to the well-known YGB result as t →∞. In the case of variable physical properties with temperature, a nonlinear migration of the droplet was described by the dynamical equation of motion, and the numerical results were compared with available experimental data. The comparison exhibits a reasonable agreement between the theoretical prediction and the experimental results, which shows the dependence of physical properties on temperature is a primary cause of the continuous velocity variation in the thermocapillary droplet migration.A slow thermocapillary migration of a droplet at vanishingly small Reynolds and Marangoni numbers was theoretically investigated. A force on the droplet released in another liquid subjected to arbitrary configuration of the gravitational field and an imposed thermal gradient for the case of constant liquid properties was derived using the general solutions given by Lamb. A solution to the migration was thereby obtained, which corresponds to the well-known YGB result as t →∞. In the case of variable physical properties with temperature, a nonlinear migration of the droplet was described by the dynamical equation of motion, and the numerical results were compared with available experimental data. The comparison exhibits a reasonable agreement between the theoretical prediction and the experimental results, which shows the dependence of physical properties on temperature is a primary cause of the continuous velocity variation in the thermocapillary droplet migration.

关 键 词:thermocapillary migration droplet/bubble dynamics interfacial tension thermal gradient 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象