基于振动信号的车用发动机运行状态预测  被引量:3

CONDITION PREDICTION OF VEHICLE ENGINE BASED ON VIBRATION SIGNALS

在线阅读下载全文

作  者:王朝晖[1] 张来斌[1] 刘春[1] 段礼祥[1] 

机构地区:[1]中国石油大学(北京)机电学院,北京昌平102249

出  处:《机械强度》2006年第5期649-653,共5页Journal of Mechanical Strength

基  金:国家自然科学基金(50105015);北京市科技新星基金(2003B33)资助项目。~~

摘  要:考虑到车用发动机结构复杂、振源较多,振动信号为非平稳信号的特点,文中利用混沌与分形理论对多组不同运行状态的振动序列进行研究,探讨关联维数与运行状态之间的内在联系,并利用混沌与神经网络相结合的方法对主要状态参量进行单变量及多变量预测。实验结果表明,关联维数能敏感反应发动机的磨损状态,而多变量的预测效果比单变量效果理想。As the vehicle engine is a complex structure with various vibration resources and the picked-up vibration signals are usually non-stationary, chaos and fractals theory is used to study a series of vibration signals, which are acquired under different running states in order to discover the intrinsic relationships between the correlation dimension and the engine states. Based on the chaos and neural network theory the prediction of the main state parameters is realized through the single variable time series and the multi-variable ones respectively. The experiment results show that the correlation dimension is sensitive to the wear conditions and the multi-variable prediction is better than the single variable one.

关 键 词:车用发动机 关联维数 状态预测 

分 类 号:U464[机械工程—车辆工程] TP306.3[交通运输工程—载运工具运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象