Passive control of chaotic system with multiple strange attractors  被引量:4

Passive control of chaotic system with multiple strange attractors

在线阅读下载全文

作  者:宋运忠 赵光宙 齐冬莲 

机构地区:[1]College of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454000, China [2]College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

出  处:《Chinese Physics B》2006年第10期2266-2270,共5页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No 60374013), the Natural Science Foundation of Zhejiang Province (Grant Nos M603217 and Y104414).

摘  要:In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form. Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one, and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.

关 键 词:CHAOS passive control the Newton-Leipnik equation attractor 

分 类 号:O41[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象