Zn Accumulation and Subcellular Distribution in the Zn Hyperaccumulator Sedurn alfredii Hance  被引量:17

Zn Accumulation and Subcellular Distribution in the Zn Hyperaccumulator Sedurn alfredii Hance

在线阅读下载全文

作  者:LI Ting-Qiang YANG Xiao-E YANG Jin-Yan HE Zhen-Li 

机构地区:[1]MOE Key Laboratory of Environment Remediation and Ecosystem Health, Zhejiang University, Huajianchi Campus, Hangzhou 310029 (China)

出  处:《Pedosphere》2006年第5期616-623,共8页土壤圈(英文版)

基  金:Project supported by the National Natural Science Foundation of China (No. 20277035)the National Key Basic Research Program (973 Program) of China (No. 2002CB410804).

摘  要:Zn accumulation and subcellular distribution in leaves of the hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance were studied using radiotracer and gradient centrifugation techniques. Leaf Zn accumulation in the HE of S. alfredii was 18.5-26.7 times greater than that in the NHE when the plants were grown at 1-500μmol Zn L-1. Leaf section uptake of 65Zn was highly dependent on external Zn levels. Greater 65Zn uptake in HE was noted only at external Zn levels 〉 100μmol L-1. Zinc subcellular distribution in the leaves of the two ecotypes of S. alfredii was: cell wall 〉 soluble fraction 〉 cell organelle. However, more Zn was distributed to the leaf cell wall and soluble fractions for HE than for NHE. In the leaf of HE, 91%-94% of the Zn was found in the cell walls and the soluble fraction and only 6%-9% Zn was distributed in the cell organelle fraction. For NHE, about 20%-26% Zn was recovered in the cell organelle fraction. In stems, Zn distribution to the ceil wail fraction was approximately two fold greater in the HE than that in the NHE. For the hyperaccumulating ecotype of S. alfredii, the cell wall and the vacuole played a very important role in Zn tolerance and hyperaccumulation.Zn accumulation and subcellular distribution in leaves of the hyperaccumulating ecotype (HE) and non-hyperaccumula-ting ecotype (NHE) of Sedum alfredii Hance were studied using radiotracer and gradient centrifugation techniques. Leaf Zn accumulation in the HE of S. alfredii was 18.5-26.7 times greater than that in the NHE when the plants were grown at 1-500μmol Zn L-1. Leaf section uptake of 65Zn was highly dependent on external Zn levels. Greater 65Zn uptake in HE was noted only at external Zn levels≥100 F44mol L-1. Zinc subcellular distribution in the leaves of the two ecotypes of S. alfredii was: cell wall > soluble fraction > cell organelle. However, more Zn was distributed to the leaf cell wall and soluble fractions for HE than for NHE. In the leaf of HE, 91%-94% of the Zn was found in the cell walls and the soluble fraction and only 6%-9% Zn was distributed in the cell organelle fraction. For NHE, about 20%-26% Zn was recovered in the cell organelle fraction. In stems, Zn distribution to the cell wall fraction was approximately two fold greater in the HE than that in the NHE. For the hyperaccumulating ecotype of S. alfredii, the cell wall and the vacuole played a very important role in Zn tolerance and hyperaccumulation.

关 键 词:COMPARTMENTATION Sedum alfredii Hance subcellular distribution Zn hyperaccumulator 

分 类 号:S153[农业科学—土壤学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象