Electronic Structure and Thermoelectric Properties of Na and Ni-doped Ca_3Co_2O_6  

Electronic Structure and Thermoelectric Properties of Na and Ni-doped Ca_3Co_2O_6

在线阅读下载全文

作  者:闵新民 

机构地区:[1]Department of Applied Chemistry, Wuhan University of Technology, Wuhan 430070, China,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology, Wuhan 430070,China

出  处:《Journal of Wuhan University of Technology(Materials Science)》2006年第3期94-96,共3页武汉理工大学学报(材料科学英文版)

基  金:Funded by the National Natural Science Foundation of China(No.20271040)

摘  要:The electronic structures of Ca3Co2O6, Na and Ni doped models were studied by the quantum chemical software of Cambride Serial Total Energy Package (CASTEP) that is based on deusity function theory (DFT) and psendo-potential. The electronic conductivity, seebeck coefficient, thermal conduetivity and figure of merit (Z) were computed. The energy band structure reveals the form of the impurity levels due to the substitutional imapurity in semiconductors. Na-doped model stunts the character of p-type semiconductor, but Xi-doped model is n-type semiconductor. The calculation results show that the electric conduetirity of the doped model is higher than that of the non-doped model, while the Seebeck coefficient and thermal conductivity of the doped model are lower than those of the non-doped one. Because of the great increase of the electric conductivity, Z of Na- doped model is enhanced and thermoelectric properties are improved. On the other hand, as the large decline of Seebeck coefficient, Z of Ni-doped model is less than that of the non-doped model.The electronic structures of Ca3Co2O6, Na and Ni doped models were studied by the quantum chemical software of Cambride Serial Total Energy Package (CASTEP) that is based on deusity function theory (DFT) and psendo-potential. The electronic conductivity, seebeck coefficient, thermal conduetivity and figure of merit (Z) were computed. The energy band structure reveals the form of the impurity levels due to the substitutional imapurity in semiconductors. Na-doped model stunts the character of p-type semiconductor, but Xi-doped model is n-type semiconductor. The calculation results show that the electric conduetirity of the doped model is higher than that of the non-doped model, while the Seebeck coefficient and thermal conductivity of the doped model are lower than those of the non-doped one. Because of the great increase of the electric conductivity, Z of Na- doped model is enhanced and thermoelectric properties are improved. On the other hand, as the large decline of Seebeck coefficient, Z of Ni-doped model is less than that of the non-doped model.

关 键 词:cobalt oxide substitutional impurity quantum chemical calculation electronic structure thermoelectric property 

分 类 号:TB39[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象