Application of MLPG in large deformation analysis  被引量:8

Application of MLPG in large deformation analysis

在线阅读下载全文

作  者:Xi Zhang Zhenhan Yao Zhangfei Zhang 

机构地区:[1]Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

出  处:《Acta Mechanica Sinica》2006年第4期331-340,共10页力学学报(英文版)

基  金:The project supported by the National Natural Science Foundation of China (10472051). The English text was polished by Keren Wang

摘  要:Two-dimensional large deformation analysis of hyperelastic and elasto-plastic solids based on the Meshless Local Petrov-Galerkin method (MLPG) is presented. A material configuration based the nonlinear MLPG formulation is introduced for the large deformation analysis of both path-dependent and path-independent materials. The supports of the MLS approximation functions cover the same sets of nodes during material deformation, thus the shape function needs to be computed only in the initial stage. The multiplicative hyperelasto-plastic constitutive model is adopted to avoid objective time integration for stress update in large rota- tion. With this constitutive model, the computational formulations for path-dependent and path-independent materials become identical. Computational efficiency of the nonlinear MLPG method is discussed and optimized in several aspects to make the MLPG an O(N) algorithm. The numerical examples indicate that the MLPG method can solve large deformation problems accurately. Moreover, the MLPG computations enjoy better convergence rate than the FEM under very large particle distortion.Two-dimensional large deformation analysis of hyperelastic and elasto-plastic solids based on the Meshless Local Petrov-Galerkin method (MLPG) is presented. A material configuration based the nonlinear MLPG formulation is introduced for the large deformation analysis of both path-dependent and path-independent materials. The supports of the MLS approximation functions cover the same sets of nodes during material deformation, thus the shape function needs to be computed only in the initial stage. The multiplicative hyperelasto-plastic constitutive model is adopted to avoid objective time integration for stress update in large rota- tion. With this constitutive model, the computational formulations for path-dependent and path-independent materials become identical. Computational efficiency of the nonlinear MLPG method is discussed and optimized in several aspects to make the MLPG an O(N) algorithm. The numerical examples indicate that the MLPG method can solve large deformation problems accurately. Moreover, the MLPG computations enjoy better convergence rate than the FEM under very large particle distortion.

关 键 词:Meshless method MLPG. Large deformation HYPERELASTICITY Hyperelasto-plasticity 

分 类 号:O34[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象