检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学数力系
出 处:《黄淮学刊(自然科学版)》1996年第4期14-18,共5页
基 金:国家煤炭部科学基金
摘 要:讨论完全弹性体的有限弹性变形问题.根据变形可恢复性,采用两种参考系度量应力分量,导出恒等式式中(δik+ui,k)Sky=σiy为有限变形梯度张量,Siy为A参考系中的Kirchhoff应力张量,σiy为B参考系中的Euler应力张量.上式即为有限弹性变形的本构方程.有限弹性变形的解法为首先在B参考系中采用经典线性理论解出σiy,而后代入上式,ui与Siy可解.This paper discusses the problem of finite elastic deformation. According to the recoverability of elastic deformation,the identical formula is derived by using the stress component of measure in two reference systems: Where, (δik+ui,k)is a gradien tensor of finite displacement; Siy mean stress components in two reference systems respectively. The constitutive equation has not only quantitatively described the stress tensor Siy and the gradient tensor of the deformation , but also the recover ability of the deformation qualitively.This paper also provides the theoretical basis for finite elastic deformation. are derivedby using the classical theory first of all,then the displacement vector ui and stress component Siy are solved by equation above.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28