计算布尔差分与布尔偏导数的表格方法  被引量:2

Tabular method of calculating Boolean difference and partial derivative

在线阅读下载全文

作  者:刘观生[1] 陈偕雄[1] 

机构地区:[1]浙江大学信息与电子工程学系,浙江杭州310028

出  处:《浙江大学学报(工学版)》2006年第9期1486-1489,共4页Journal of Zhejiang University:Engineering Science

摘  要:为了简化Reed-Muller型逻辑函数的布尔差分与布尔偏导数的计算过程,提出了一种基于表格的新方法.该方法通过用表格列出Reed-Muller型逻辑函数的1值积项,并对1值积项中相应的位取1到0的变换产生新项来计算一阶布尔差分.二阶布尔差分通过两次变换产生新积项,并删除相同积项来得到.一阶布尔偏导数作为一阶布尔差分,二阶布尔偏导数通过对积项中相应位作两次连续的1到0的变换来得到.该方法用表格模拟了计算布尔差分与布尔偏导数的过程.应用结果表明,与图形方法相比较,该方法不需要画图,操作简便,可适合求解多变量逻辑函数以及计算机编程.To simplify the process of calculating Boolean difference and partial derivation of Reed-Muller type logic function, a new method based on tabular was proposed. 1-value product items of Reed-Muller type logic function was tabularly listed, and the first-order Boolean difference was calculated by transforming corresponding bits of 1-value product items 1-0 to produce new items. The second-order Boolean difference was obtained by double transform operations to produce new product items, and the same product items were deleted. The first-order Boolean partial derivative was taken as the first-order Boolean difference, and the second-order Boolean partial derivative was calculated by twice continuously transforming corresponding bits of product items from 1 to 0. The process of calculating Boolean difference and partial derivation was simulated by tabular method. The application results show that compared with the graphic method, the presented tabular method dispenses with drawing, is simple and convenient for operation, and suitable for solving multi-variable logic function and programming on computers.

关 键 词:RM展开 表格方法 布尔差分 布尔偏导数 

分 类 号:TN431[电子电信—微电子学与固体电子学] TN402

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象