检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学计算机学院
出 处:《计算机科学》2006年第10期198-201,共4页Computer Science
基 金:重庆市自然科学基金资助项目(2005BB2224)。
摘 要:离群数据挖掘与分析在网络入侵控制、信用卡检测、通信欺诈分析等诸多领域具有十分重要的意义。结合粗糙集理论的属性约简技术,定义了α-离群约简等概念,提出了一种以属性离群贡献率和离群划分相似水平为基础的基于遗传算法的α-离群约简算法。这种方法通过维数更小的属性子空间去获得相同或相近的离群数据集,使对离群数据来源及出现原因的分析和理解更加集中于较小的目标域。通过对现实数据集的实验表明,该算法可有效地产生出约简并具有较好的规模适应性。Mining and analyzing for outliers is of great importance in many applications, including network invasion control, credit card and teleeom fraud detection, etc. A concept of a-outlying reduction is defined in the paper based on the approach of attribute reduction in the theory of rough set. Along with the discussion of outlying contribution rate of attributes and the level of outlying partition similarity, this paper proposes a searching algorithm for α-outlying reduction based on genetic algorithm. The approach can help us obtain similar outlier sets by means of searching in an attributes subspace with lesser dimension, which leads to that analyzing for origins and appearance reasons of outliers is focused better on narrow and specific object fields. Experimental results on real world data sets show that the proposed algorithm is scalable and efficient and it can result in optimal eduction.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28