TWO-WEIGHT NORM INEQUALITY FOR IMAGINARY POWERS OF A LAPLACE OPERATOR  

TWO-WEIGHT NORM INEQUALITY FOR IMAGINARY POWERS OF A LAPLACE OPERATOR

在线阅读下载全文

作  者:Jianlin ZHANG Department of Mathematics and Physics,Zhongyuan Institute of Technology,Zhengzhou 450007,China Department of Mathematics,Beijing Institute of Technology,Beijing 100081,China. 

出  处:《Journal of Systems Science & Complexity》2006年第3期403-408,共6页系统科学与复杂性学报(英文版)

摘  要:We study two-weight norm inequality for imaginary powers of a Laplace operator in R^n, n ≥ 1, especially from weighted Lebesgue space Lv^p(R^n) to weighted Lebesgue space Lμ^p(R^n), where 1 〈 p 〈 ∞. We prove that the two-weighted norm inequality holds whenever for some t 〉 1, (μ^t, v^t) ∈ Ap, or if (μ, v) ∈Ap, where μ and v^-1/(p-1) satisfy the growth condition and reverse doubling property.

关 键 词:Ap condition Laplace operator weighted norm inequality. 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象