一种新的动态进化聚类算法(英文)  被引量:1

A Novel Dynamic Evolutionary Clustering Algorithm

在线阅读下载全文

作  者:彭玲[1] 

机构地区:[1]中南大学商学院,湖南长沙410083

出  处:《广西师范大学学报(自然科学版)》2006年第4期103-106,共4页Journal of Guangxi Normal University:Natural Science Edition

基  金:Natural Science Foundation of Hubei (2001ABB006,2003ABA043);Science and Technology Projectsof Zhuzhou Institute of Technology (03B31)

摘  要:针对模糊聚类算法不适应复杂环境的问题,提出了一种新的动态进化聚类算法,克服了传统模糊聚类建模算法须事先确定规则数的缺陷。通过改进的遗传策略来优化染色体长度,实现对聚类个数进行全局寻优;利用FCM算法加快聚类中心参数的收敛;并引入免疫系统的记忆功能和疫苗接种机理,使算法能快速稳定地收敛到最优解。利用这种高效的动态聚类算法辨识模糊模型,可同时得到合适的模糊规则数和准确的前提参数,将其应用于控制过程可获得高精度的非线性模糊模型。A novel dynamic evolutionary clustering algorithm(DECA) is proposed in this paper to overcome the shortcomings of fuzzy modeling method based on general clustering algorithms that fuzzy rule number should be determined beforehand. DECA searches for the optimal cluster number by using the improved genetic techniques to optimize string lengths of chromosomes ; at the same time,the convergence of clustering center parameters is expedited with the help of Fuzzy C-Means(FCM) algorithm. Moreover,by introducing memory function and vaccine inoculation mechanism of immune system,at the same time ,DECA can converge to the optimal solution rapidly and stably. The proper fuzzy rule number and exact premise parameters are obtained simultaneously when using this efficient DECA to identify fuzzy models. The effectiveness of the proposed fuzzy modeling method based on DECA is demonstrated by simulation examples,and the accurate nonlinear fuzzy models can be obtained when the method is applied to the thermal processes.

关 键 词:免疫机制 遗传算法 动态聚类 模糊模型 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象