检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学电子与信息工程学院,上海200092
出 处:《计算机工程与应用》2006年第28期159-160,163,共3页Computer Engineering and Applications
摘 要:在数据挖掘过程中,缺损数据是不可避免的,因此,数据预处理是必不可少的前提工作。在传统的数据预处理工作中,朴素贝叶斯算法是最常用的缺损数据修补算法。然而,现实世界中的数据经常不满足其属性独立性假设,分类结果不令人满意。文章基于聚类分析思想,提出了一种改进的贝叶斯算法。对大量数据的计算结果表明此方法的合理性、可信度优于朴素贝叶斯算法。The problem of defective data often arises during the course of data mining.Thus data preprocessing is necessary.In the traditional data preprocessing,naive Bayesian method is commonly used to remedy defective data. However,the assumption that attributes are independent is always unfit for data of real world,and the classification result is unsatisfactory.On the basis of clustering analysis ,this paper presents an improved Bayesian method.The result of calculations on mass data shows that this method is more reasonable and believable compared with naive Bayesian method.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.227