多模函数的一种全局优化策略研究  被引量:2

Global Optimization Strategy for Multimodal Functions

在线阅读下载全文

作  者:马宏[1] 李晓磊[1] 张承进[1] 

机构地区:[1]山东大学控制科学与工程学院,山东济南250061

出  处:《系统仿真学报》2006年第10期2782-2785,共4页Journal of System Simulation

基  金:山东省自然科学基金(Y2005G18)

摘  要:Animat理论是人工生命的一种表现形式,具有自治性、适应性、涌现性等复杂系统所体现的特点。基于animat理论,采用面向对象的分析方法建立其视觉模型和反应行为机制,通过模拟动物勘查周围复杂、陌生的环境以寻找路径的方式,提出了一种灵活稳定的优化策略,尝试用其解决多模函数全局优化的问题。利用标准测试函数对此优化策略进行测试,仿真结果表明其充分发挥了animat理论特点,具有良好的收敛性和计算精度,可以克服现有智能优化算法在求解优化问题时的早熟、求解精度不高等问题,对各种优化问题均具有很强自适应性。Animat is one of the artificial life theories. It has properties of autonomy, adaptability and emergence which are the possessions of complex systems. An optimization strategy based on animat theory was proposed and was used to deal with multimodal function optimization problems. It simulated animal's path seeking process in complex and unknown environment. An animat structure mainly consisted of the vision model and reacting behavior mechanism of animals was implemented via object-oriented analysis method, which provides us a flexible and stable optimization strategy. Experiments on four typical test functions were carried out, and the results show that this optimization strategy has nice convergence ability and high precision. Autonomous and adaptive ability of animat theory are also demonstrated, And it has no prematurity that other intelligent algorithms have suffered.

关 键 词:animat 视觉模型 反应行为 全局优化 多模函数 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象