检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张卫丰[1] 徐宝文[2] 崔自峰[2] 徐峻岭[2]
机构地区:[1]南京邮电大学计算机学院,南京210003 [2]东南大学计算机科学与工程学院
出 处:《Journal of Southeast University(English Edition)》2006年第3期439-444,共6页东南大学学报(英文版)
基 金:The National Natural Science Foundation of China(No.60503020,60373066,60403016,60425206),the Natural Science Foundation of Jiangsu Higher Education Institutions ( No.04KJB520096),the Doctoral Foundation of Nanjing University of Posts and Telecommunication (No.0302).
摘 要:A rough set based corner classification neural network, the Rough-CC4, is presented to solve document classification problems such as document representation of different document sizes, document feature selection and document feature encoding. In the Rough-CC4, the documents are described by the equivalent classes of the approximate words. By this method, the dimensions representing the documents can be reduced, which can solve the precision problems caused by the different document sizes and also blur the differences caused by the approximate words. In the Rough-CC4, a binary encoding method is introduced, through which the importance of documents relative to each equivalent class is encoded. By this encoding method, the precision of the Rough-CC4 is improved greatly and the space complexity of the Rough-CC4 is reduced. The Rough-CC4 can be used in automatic classification of documents.针对文档分类过程中不同大小文档表示、文档特征选择和文档特征编码问题,提出了一种基于粗糙集的角分类神经网络Rough-CC4.利用近义词构成等价类,以此表示文档,可以缩小文档表示的维数、解决由于文档不同大小导致的精度问题、模糊近义词之间的差别;利用二进制编码方法对文档特征编码,可以提高Rough-CC4的精度,同时减小Rough-CC4的空间复杂度.Rough-CC4可以广泛用于大量文档集合的自动分类.
关 键 词:document classification neural network rough set meta search engine
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80