检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《遥感信息》2006年第5期27-30,51,共5页Remote Sensing Information
基 金:国家自然科学基金(40301013)项目资助
摘 要:依据高分辨率遥感影像的特点,结合深圳市QUICKBIRD数据提出一种基于多尺度分割的对象级遥感分类方法。文中首先利用分形网络演化法(FNEA)进行多尺度图像分割,获取对地表实体更具代表性的图像对象,然后利用对象所包含的光谱、空间特征来确定地物识别中可能要用到的各种特征参数,最后通过构建语义结构实现了研究区地物的逐级分层分类。研究结果表明,本文所采取的方法比传统方法在分类精度上有了明显的提高,为高分辨率遥感影像的信息提取提供了新的技术途径。High-resolution remote sensing images have many more spatial characteristics than low-resolution data except spectral characteristics. Object-oriented image classification is a new technique in this research field, it can make most use of their advantages to extract information compared to the conventional pixel-oriented methods. In this case study, we classified QUICKBIRD image of Shenzhen city with the new method. Firstly, the image was multi-scale segmented by Fractal Net Evolution Approach to get objects; and then, we selected some characteristic parameters for realization according to spectral and spatial features of image objects. These different objects could be recognized easily using some suitable characteristics; finally, multiple level classification was realized based on semantic structure in the study area. The result showed that classification accuracy was improved by using object-oriented method, and this approach provided a new way for classification of high-resolution remote sensing data.
分 类 号:P237.3[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28