检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毕小龙[1] 王洪跃[1] 司风琪[1] 徐治皋[1]
出 处:《汽轮机技术》2006年第5期386-388,392,共4页Turbine Technology
摘 要:提出了一种新的高加系统故障诊断方法。首先使用核主元分析方法进行特征提取,降低数据维数,既简化了诊断过程,又提高了故障诊断的精度。然后使用概率神经网络进行故障模式识别。该神经网络训练速度快,容易添加新的训练样本。最后将该方法川于某汽轮机组高加系统故障诊断中,取得了较好的诊断效果,表明该方法具有一定的工程实用价值。A novel approach to diagnosing the faults in high - pressure heater system was presented. Firstly, the kernel principal component analysis was employed to extract main features from high dimension patterns by means of kernel trick. Not only was the diagnosing process simplified but also the diagnosing accuracy was ensured. Secondly, the probabilistic neural network (PNN) was utilized to identify the fault mode. PNN can be trained quickly. Moreover, the new trained samples can be added to PNN easily. Finally, the proposed scheme was applied to diagnose the faults in high - pressure system of a turbine unit. The diagnosis results proved that this method was practical in engineering.
分 类 号:TM267[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.176.192