Difference Energy Based Blind Image Watermarking Resisting to Geometrical Distortions  

Difference Energy Based Blind Image Watermarking Resisting to Geometrical Distortions

在线阅读下载全文

作  者:YU Yanwei LU Zhengding LING Hefei 

机构地区:[1]College of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

出  处:《Wuhan University Journal of Natural Sciences》2006年第6期1882-1886,共5页武汉大学学报(自然科学英文版)

基  金:Supported by the National Natural Science Foundation ofChina (60502024);the Natural Science Foundation of Hubei Province(2005ABA267) ;the Electronic Development Fund of Ministry of Informa-tionIndustry of China and the Innovation Fundfor Technology Based Firmsof Ministry of Science and Technology of China (04C26214201284) .

摘  要:In this paper a blind image watermarking that can resist to rotation, scaling and translation (RST) attacks is proposed. Based on the spread spectrum, the watermark is modulated before embedding. The logpolar mapped discrete fourier transform (LPM-DFT) magnitude of a disk, a part of the origin image, constitutes the RST-invariant domain, where the origin of the LPM is the center of the disk and the sampling rates of the LPM are constant. After the middle frequency band of LPM-DFT magnitude, namely the watermark-embedding domain, is grouped according to the watermark length, the watermark is embedded by adjusting the difference between the two sub-region energy in each group. To improve the imperceptibility, the watermark-embedding domain is shuffled before embedding and the watermark is not embedded directly into the watermark-embedding domain. In watermark detection procedure, neither the original image nor any knowledge about the distortions is required. Experimental results show that the proposed scheme is very robust against RST distortion and common image processing attacks.In this paper a blind image watermarking that can resist to rotation, scaling and translation (RST) attacks is proposed. Based on the spread spectrum, the watermark is modulated before embedding. The logpolar mapped discrete fourier transform (LPM-DFT) magnitude of a disk, a part of the origin image, constitutes the RST-invariant domain, where the origin of the LPM is the center of the disk and the sampling rates of the LPM are constant. After the middle frequency band of LPM-DFT magnitude, namely the watermark-embedding domain, is grouped according to the watermark length, the watermark is embedded by adjusting the difference between the two sub-region energy in each group. To improve the imperceptibility, the watermark-embedding domain is shuffled before embedding and the watermark is not embedded directly into the watermark-embedding domain. In watermark detection procedure, neither the original image nor any knowledge about the distortions is required. Experimental results show that the proposed scheme is very robust against RST distortion and common image processing attacks.

关 键 词:image watermarking geometrical attacks INVARIANCE ROBUSTNESS 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象