检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程承旗[1] 常鹏飞[1] 郭仕德[1] 林旭东[1]
机构地区:[1]北京大学遥感与地理信息系统研究所,北京100871
出 处:《水土保持研究》2006年第6期243-246,共4页Research of Soil and Water Conservation
基 金:国家863项目支持(项目编号:2003AA783060)
摘 要:空气总悬浮颗粒物遥感信息模型是使用遥感信息模型的方法来模拟空气总悬浮颗粒物在空间上的分布。通过对空气总悬浮颗粒物来源和分布影响的因子分析,认为地表覆盖情况因子对空气总悬浮颗粒物来源影响最大,降雨强度和风速因子对空气总悬浮颗粒物分布影响最大,因此根据此三个因子建立了空气总悬浮颗粒物遥感信息模型。然后根据对厦门市高分辨遥感的分类数据和空气总悬浮颗粒物的分布数据得到了空气总悬浮颗粒物遥感信息模型的地理参数。通过对公式结果验证认为该模型较好的模拟了空气总悬浮颗粒的分布,为空气总悬浮颗粒物浓度的分布研究提出一种新思路。Remote Sensing Information Quantificational Model for Total Suspended Particles Concentration is to simulate the spatial distribution of total suspended particles in air. The remote sensing information analysis approaches are employed in this model. Through combing remote sensing information modeling method and analysis source of TSP, three independent factors that influence significantly on the concentration and its variability of TSPC in both temporal and spatial distribution including total suspended particles productivity, rainfall intensity and wind velocity are selected to retrieve the TSP concentration. Some uncertain impact factors are also considered in this model. Some classified images from high-resolution remote sensed data and meteorologic data are applied to obtain those uncertain factors. Comparison of the simulated TSPC images the observation data by using multivariable regression method is implemented. The result shows that the RSIMTSPC is a useful model in simulating TSP spatial distributions.
关 键 词:空气总悬浮颗粒物浓度 遥感信息模型 遥感影像
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222