检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学岩土工程研究所,长沙410082 [2]开封大学土木建筑学院,河南开封475004 [3]武汉理工大学土木与建筑工程学院,武汉430070
出 处:《建筑科学》2006年第5期20-24,共5页Building Science
基 金:国家自然科学基金项目(50378036);教育部高等学校博士学科点专项基金项目(20020532008)资助
摘 要:嵌岩灌注桩因其诸多优点在桥梁等工程领域中广泛使用,但当上覆土层软弱且桩顶自由长度较大时,桩身屈曲稳定问题应引起重视。为探讨桩侧土约束对桩身屈曲稳定的影响,假定地基反力系数呈更一般的幂分布,基于弹性地基梁理论建立桩土体系总势能方程,采用最小势能原理导得桩身屈曲临界荷载与计算长度解答,并据此讨论了地基反力系数分布模式、桩身自重及桩侧摩阻力等对桩身屈曲稳定的影响规律。这些定性的规律对嵌岩灌注桩的设计与施工具有一定的指导意义。Rock-socketed filling piles have been widely used especially in bridge engineering due to its advantages. But when the covering subsoil is weak or the unsupported pile top part is long, the buckling failure of the pile shaft should be regarded as a problem. To investigate the influence of the constraint of surrounding soil, on the buckling of the pile shaft, the most general exponential distribution of subgrade reaction coefficient is assumed and the total potential energy equation of the pile-soil system is set up based on the simplified elastic beam model. Then, solutions for the buckling length and the load of the pile shaft are deduced by applying the minimum potential energy principle. And based on the obtained solutions, influencing rules of the distribution of subgrade reaction coefficient, deadweight and side resistance on the buckling behavior of the pile shaft are discussed respectively in detail. These rules may be applied to guide the design and construction of the rock-socketed filling pile.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200