检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:V.A.KHATSKEVICH V.A.SENDEROV
机构地区:[1]Braude College,College Campus P.O [2]23-2-156,Pyatnitskoe highway
出 处:《Acta Mathematica Sinica,English Series》2006年第6期1687-1694,共8页数学学报(英文版)
摘 要:The operator sets, which are the subject of this paper, have been studied in many papers where, under different restrictions on the generating operators, convexity, compactness in the weak operator topology, and nonemptiness were proved for sets of different classes under study. Then the results obtained were used in these papers to solve several applied problems. Namely, they played the key role in establishing the dichotomy of nonautonomous dynamical systems, with either continuous or discrete time. In the present paper, we generalize and sharpen the already known criteria and obtain several new criteria for convexity, compactness, and nonemptiness of several special operator sets. Then, using the assertions obtained, we construct examples of sets of the form under study which are nonconvex, noncompact in the weak operator topology, as well as empty, and are generated by "smooth" operators of a special class. The existence problem for such sets remained open until the authors of this paper announced some of its results.The operator sets, which are the subject of this paper, have been studied in many papers where, under different restrictions on the generating operators, convexity, compactness in the weak operator topology, and nonemptiness were proved for sets of different classes under study. Then the results obtained were used in these papers to solve several applied problems. Namely, they played the key role in establishing the dichotomy of nonautonomous dynamical systems, with either continuous or discrete time. In the present paper, we generalize and sharpen the already known criteria and obtain several new criteria for convexity, compactness, and nonemptiness of several special operator sets. Then, using the assertions obtained, we construct examples of sets of the form under study which are nonconvex, noncompact in the weak operator topology, as well as empty, and are generated by "smooth" operators of a special class. The existence problem for such sets remained open until the authors of this paper announced some of its results.
关 键 词:COMPACTNESS CONVEXITY Linear fractional relation Operator ball Krein space
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28