MODELLING AND COMPUTATION OF UNSTEADY TURBULENT CAVITATION FLOWS  被引量:21

MODELLING AND COMPUTATION OF UNSTEADY TURBULENT CAVITATION FLOWS

在线阅读下载全文

作  者:CHEN Ying LU Chuan-jing WU Lei 

机构地区:[1]Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai 200240, China

出  处:《Journal of Hydrodynamics》2006年第5期559-566,共8页水动力学研究与进展B辑(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No: 10372061) ;the Doctor Foundation (Grant No: 20030248001).

摘  要:Unsteady turbulent cavitation flows in a Venturi-type section and around a NACA0012 hydrofoil were simulated by two-dimensional computations of viscous compressible turbulent flow model. The Venturi-type section flow proved numerical precision and reliability of the physical model and the code, and further the cavitation around NACA0012 foil was investigated. These flows were calculated with a code of SIMPLE-type finite volume scheme, associated with a barotropic vapor/liquid state law which strongly links density and pressure variation. To simulate turbulent flows, modified RNG k-ε model was used. Numerical results obtained in the Venturi-type flow simulated periodic shedding of sheet cavity and was compared with experiment data, and the results of the NACA0012 foil show quasi-periodic vortex cavitation phenomenon. Results obtained concerning cavity shape and unsteady behavior, void ratio, and velocity field were found in good agreement with experiment ones.Unsteady turbulent cavitation flows in a Venturi-type section and around a NACA0012 hydrofoil were simulated by two-dimensional computations of viscous compressible turbulent flow model. The Venturi-type section flow proved numerical precision and reliability of the physical model and the code, and further the cavitation around NACA0012 foil was investigated. These flows were calculated with a code of SIMPLE-type finite volume scheme, associated with a barotropic vapor/liquid state law which strongly links density and pressure variation. To simulate turbulent flows, modified RNG k-ε model was used. Numerical results obtained in the Venturi-type flow simulated periodic shedding of sheet cavity and was compared with experiment data, and the results of the NACA0012 foil show quasi-periodic vortex cavitation phenomenon. Results obtained concerning cavity shape and unsteady behavior, void ratio, and velocity field were found in good agreement with experiment ones.

关 键 词:TURBULENT CAVITATION VENTURI NACA0012 

分 类 号:TV131.2[水利工程—水力学及河流动力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象