最小二乘支持向量回归与偏最小二乘回归建立烟草总糖NIR预测模型比较  被引量:13

Comparison of Tobacco Total Sugar NIR Prediction Models Developed with Least Square Support Vector Regression and Partial Least Square Regression

在线阅读下载全文

作  者:李世勇 王芳[2] 邵学广[3] 

机构地区:[1]河南新郑烟草(集团)公司,河南新郑市烟厂大街16号451150 [2]郑州烟草研究院 [3]南开大学化学系,天津市南开区卫津路94号300071

出  处:《烟草科技》2006年第11期45-48,共4页Tobacco Science & Technology

摘  要:采用最小二乘支持向量回归(LSSVR)法和偏最小二乘回归(PISR)法及192个烟叶样品的近红外(NIR)光谱与总糖含量的测定数据,分别建立了烟叶总糖含量的NIR预测模型,并利用这两种模型对95个烟叶样品进行了预测。结果表明:LSSVR法模型的预测误差范围为-3.08%~3.71%,预测回收率范围为90.0%~112.2%。LSSVR法模型的预测准确度比PLSR法的高。The two prediction models of total sugar in tobacco were developed with least square support vector regression (LSSVR), partial least square regression (PLSR) based on the total sugar contents in and near infrared spectra (NIRs) of 192 flue-cured tobacco samples. The contents of total sugar in other 95 samples were predicted with the models. It was found that the prediction range of recoveries of LSSVR model were from 90.0% to 112.2% and the prediction errors were in the range of - 3.08% to 3.71 %, while those of PLSR model were from 89.8 % to 113.6 % and from - 4.75 % to 3.85 %, respectively. LSSVR model was superior to PLSR model in prediction accuracy.

关 键 词:近红外光谱 化学计量学 总糖 最小二乘支持向量回归 烟草 

分 类 号:TS411.1[农业科学—烟草工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象