Science Letters:A modified chlorophyll absorption continuum index for chlorophyll estimation  被引量:3

Science Letters:A modified chlorophyll absorption continuum index for chlorophyll estimation

在线阅读下载全文

作  者:YANG Xiao-hua HUANG Jing-feng WANG Fu-min WANG Xiu-zhen YI Qiu-xiang WANG Yuan 

机构地区:[1]Institute of Agricultural Remote Sensing & Information Application, Zhejiang University, Hangzhou 310029. China [2]Zhejiang Meteorological Institute. Hangzhou 310004, China

出  处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2006年第12期2002-2006,共5页浙江大学学报(英文版)A辑(应用物理与工程)

基  金:Project (Nos. 40571115 and 40271078) supported by the NationalNatural Science Foundation of China

摘  要:There is increasing interest in using hyperspectral data for quantitative characterization of vegetation in spatial and temporal scopes. Many spectral indices are being developed to improve vegetation sensitivity by minimizing the background influence. The chlorophyll absorption continuum index (CACI) is such a measure to calculate the spectral continuum on which the analyses are based on the area of the troughs spanned by the spectral continuum. However, different values of CACI were obtained in this method because different positions of continuums were determined by different users. Furthermore, the sensitivity of CACI to agronomic parameters such as green leaf chlorophyll density (GLCD) has been reduced because the fixed positions of con- tinuums are determined when the red edge shifted with the change in GLCD. A modified chlorophyll absorption continuum index (MCACI) is presented in this article. The red edge inflection point (REIP) replaces the maximum reflectance point (MRP) in near-infrared (NIR) shoulder on the CACI continuum. This MCACI has been proved to increase the sensitivity and predictive power of GLCD.There is increasing interest in using hyperspectral data for quantitative characterization of vegetation in spatial and temporal scopes. Many spectral indices are being developed to improve vegetation sensitivity by minimizing the background influence. The chlorophyll absorption continuum index (CACI) is such a measure to calculate the spectral continuum on which the analyses are based on the area of the troughs spanned by the spectral continuum, However, different values of CACI were obtained in this method because different positions of continuums were determined by different users. Furthermore, the sensitivity of CACI to agronomic parameters such as green leaf chlorophyll density (GLCD) has been reduced because the fixed positions of continuums are determined when the red edge shifted with the change in GLCD. A modified chlorophyll absorption continuum index (MCACI) is presented in this article. The red edge inflection point (REIP) replaces the maximum reflectance point (MRP) in near-infrared (NIR) shoulder on the CACI continuum. This MCACI has been proved to increase the sensitivity and predictive power of GLCD.

关 键 词:CONTINUUM CHLOROPHYLL Sensitivity Prediction power 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象