图簇G_(j_1j_2…j_t)^(S^* (i))(p,tkm)的伴随多项式的因式分解及色性分析  

The Factorization of Adjoint Polynomials of Graphs G_(j_1j_2…j_t)^(s^* (i))(p,tkm) and Chromatically Equivalence Analysis

在线阅读下载全文

作  者:杨继明[1] 张秉儒[2] 陈志华[1] 

机构地区:[1]玉溪师范学院数学系,云南玉溪653100 [2]青海师范大学数学系,青海西宁810008

出  处:《南昌大学学报(理科版)》2006年第5期413-417,共5页Journal of Nanchang University(Natural Science)

基  金:国家自然科学基金资助项目(10061003)

摘  要:令S1,k表示k+1个顶点的星,Pm表示m个顶点的路,G是任意的p阶连通图.设V(Pm)={V1,V2,…,Vm-1,Vm}及相应的度序列为(1,2,…,2,1)。SkPm(i+)1表示把kPm的每个分支的第i个顶点Vi分别与星S1,k的k个1度点重迭后得到的图,用GjS1*j2(…i)jt(p,tkm)表示把tSPkm(i+)1的每个分支的k度点分别与图G的顶点uj1,uj2,…,ujt(t≤p)重迭后得到的图,这里p≥1,k≥2,m≥3,1≤i≤m,t≥1.我们通过讨论图簇SkPm(i+)1∪(k-1)K1、S2Pr(mi)+1,SP((2ri)-1)m+1以及GSj1*j2(…i)jt(p,2rmt),GSj1*j2(…ij)t(p,(2r-1)mt)的伴随多项式的因式分解,证明了它们的补图的色等价图的结构定理.推广了张秉儒证明的文[8]中的定理2和定理4。Let S1,k be the star with k + 1 vertices, and let Pm denote the path with m vertices,let G be an arbitary connected graph. And let V(Pm )={V1,V2,…,Vm-1,Vm}with corresponding degree sequence ( 1,2,... ,2,1 ). Denote by Skm+1^p(i) the graph consisting of kPm and S1,k by coinciding the ith vertex of each component of kPm with k vertices of degree 1 of S1,k respectively. Let Gj1j2…ji^S^*(i)(p,tkm)denote the graph obtained from tSkm+1^p(i) and G by coinciding the vertex of degree k of everyone of tSkm+1^p(i) with vertices uj1,uj2,……,ujt(t≤p) of graph G respectively, where p≥1,k≥2,m ≥3,1≤i≤m,t≥q,By studyying the factorization of adjoint polynomials of the graphs Skm+1^p(i)U(k-1)k1,U(k-1)K1、S2rm+1^P(i),S(2r-1)m+1^P(i) and Gj1j2…jt^S*(i)(p,2rmt),Gj1j2……jt^S*(i)(2r-1)mt),the paper proved the structure theorem of the chromatically equivatent graphs of their complements, and improve Theorem 2 and Theorem 4 in Zhang Bing -ru[ 8 ].

关 键 词:色多项式 伴随多项 因式分解 色等价性 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象