一个基于命名网络的自稳定的选举算法  被引量:1

A Self-Stabilizing Leader Election Algorithm In Named Network

在线阅读下载全文

作  者:林克旺[1] 

机构地区:[1]厦门大学计算机科学系,福建厦门361005

出  处:《基建优化》2006年第4期60-64,共5页Optimization of Capital Construction

基  金:国家自然科学基金资助(69383004);福建省自然科学基金资助(A0310007)

摘  要:选举问题是分布式计算中的一个基本问题。它一直受到广泛关注,先后发表了一大批研究论文。但是,现有的研究较少涉及选举算法的自稳定性,已经提出的自稳定选举算法的性能还不能令人满意。针对两个经典的自稳定选举算法———AG算法和DIM算法进行了分析。AG算法适用于命名网络,算法虽然简单,但算法需要假设网络的大小是已知的并且时间复杂度为O(n2),其中n表示网络结点数目。DIM算法虽不需要网络大小假设是已知的,但其时间复杂度仍然需要O(ΔDlogn),其中Δ和D分别表示结点最大的度和树的深度。利用DIM算法的思想,在AG算法的基础上,提出了一个基于命名网络的自稳定选举算法。该算法不需要知道网络的大小,而且时间复杂度为O(δ)(δ为网络直径)。Leader election algorithm is a fundamental algorithms in distributed computing, which has been studied extensively, but less papers involve its self-stabilization, and existing self-stabilizing election algorithms don't perform well. We analyze two classical self- stabilizing leader election algorithms - AG algorithm and DIM algorithm. The former is for the ID- based network and simple, but it assumes having knowledge about the network's size and its time complexity is O(n^2), where n denotes the number of nodes, Although the latter doesn't assume the network' s size, its time complexity is O(ΔDlogn ) yet, where A and D denote the maximal degree among all nodes nd depth of the tree respectively. We utilize the idea of DIM algorithm and propose a self- stabilizing leader election algorithm for the ID - base network. The new algorithm assumes no knowledge about the network's size and its time complexity is O(δ)(δ denotes the diameter of the network).

关 键 词:选举问题 自稳定算法 命名网络 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象