检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学计算机工程与科学学院 [2]南京大学计算机软件新技术国家重点实验室南京210093 [3]上海大学理学院化学系
出 处:《计算机科学》2006年第12期159-161,共3页Computer Science
基 金:国家自然科学基金(20503015);上海市教委自然科学一般项目(05AZ67);上海市教委E研究院-上海高校网格项目(20030301)的资助。
摘 要:在药物设计中,可以利用药物分子的构效关系模型进行药物活性的预报,从而降低药物开发的成本、缩短开发的周期。本文尝试结合Co-Training方法和嵌入式特征选择方法,提出了一种新的FESCOT(FeatureSelectionforCo-Training)算法。算法在药物活性数据集上进行了实验,结果显示结合了特征选择的Co-Training方法较之以前泛化能力有所提高。The activity of drug molecule can be predicted by the QSAR (Quantitative Structure Activity Relationship) model, which overcomes the disadvantages of high cost and long cycle with the traditional experimental method only. With the fact that the number of drug molecule with known activity is less than those of unknown activity, it is important to predict molecular activities with the semi-supervised learning method. However, the numerous features of drug molecule affect the prediction accuracy of the QSAR model. Therefore, a novel algorithm named FESCOT (Feature Selection for Co-Training)is proposed in this paper, which combines Co-Training and an embedded feature selection method. Experiments are carried out on the data set of molecular activities, and the results show that generalization ability of FESCOT is better than that of Co-Training without feature selection.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.164.60