用于药物活性预报的Co-Training方法  被引量:3

Prediction of Drug Activity by Using Co-Training

在线阅读下载全文

作  者:李丹[1,2] 李国正[1,2] 陆文聪[3] 

机构地区:[1]上海大学计算机工程与科学学院 [2]南京大学计算机软件新技术国家重点实验室南京210093 [3]上海大学理学院化学系

出  处:《计算机科学》2006年第12期159-161,共3页Computer Science

基  金:国家自然科学基金(20503015);上海市教委自然科学一般项目(05AZ67);上海市教委E研究院-上海高校网格项目(20030301)的资助。

摘  要:在药物设计中,可以利用药物分子的构效关系模型进行药物活性的预报,从而降低药物开发的成本、缩短开发的周期。本文尝试结合Co-Training方法和嵌入式特征选择方法,提出了一种新的FESCOT(FeatureSelectionforCo-Training)算法。算法在药物活性数据集上进行了实验,结果显示结合了特征选择的Co-Training方法较之以前泛化能力有所提高。The activity of drug molecule can be predicted by the QSAR (Quantitative Structure Activity Relationship) model, which overcomes the disadvantages of high cost and long cycle with the traditional experimental method only. With the fact that the number of drug molecule with known activity is less than those of unknown activity, it is important to predict molecular activities with the semi-supervised learning method. However, the numerous features of drug molecule affect the prediction accuracy of the QSAR model. Therefore, a novel algorithm named FESCOT (Feature Selection for Co-Training)is proposed in this paper, which combines Co-Training and an embedded feature selection method. Experiments are carried out on the data set of molecular activities, and the results show that generalization ability of FESCOT is better than that of Co-Training without feature selection.

关 键 词:药物活性 半监督学习 特征选择 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象