Cloning and Preliminary Characterization of Three Receptor-like Kinase Genes in Soybean  

Cloning and Preliminary Characterization of Three Receptor-like Kinase Genes in Soybean

在线阅读下载全文

作  者:Yuan-Yuan Ma Li-Wen Zhang Peng-Li Li Rui Gan Xiao-Ping Li Ren Zhang Yong Wang Ning-Ning Wang 

机构地区:[1]Department of Plant Biology, Nankai University, Tianjin 300071, China [2]Department of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia

出  处:《Journal of Integrative Plant Biology》2006年第11期1338-1347,共10页植物学报(英文版)

基  金:Supported by the National Natural Science Foundation of China (30270140).

摘  要:Leaf senescence that occurs in the last stage of leaf development is a genetically programmed process. It is very significant to isolate the upstream components in the senescence signaling pathway and to elucidate the molecular mechanisms that control the initiation and progression of leaf senescence. In this study, full-length cDNAs of three receptor-like protein kinase genes, designated rlpkl, rlpk2 and rlpk3, were cloned from artificially-induced senescent soybean (Glycine max L.) primary leaves (GenBank accession AY687390, AY687391, AF338813). The deduced amino acid sequences indicated that they belonged to a receptor-like kinase family. Each of rlpkl and rlpk2 encodes a leucine-rich repeat (LRR) receptor-like protein kinase. They both comprise a typical signal peptide, several LRR motifs, a single-pass transmembrane domain, and a cytoplasmic protein kinase domain. No typical extracellular domain of RLPK3 was predicted. Organ-specific expression pattern analysis by reverse-transcription polymerase chain reaction (RT-PCR) revealed higher expression levels of the three genes in cotyledons, roots and flowers. Phylogenetic analysis indicated that RLPK1 and RLPK2 belonged to an independent branch, whereas RLPK3 shared common nodes with several known RLKs responding to ablotic and biotic stresses. The evident alternations of expression profiles of rlpkl and rlpk2 induced by the artificial senescence-inducing treatment implied involvements of these two RLKs in regulating soybean leaf senescence.Leaf senescence that occurs in the last stage of leaf development is a genetically programmed process. It is very significant to isolate the upstream components in the senescence signaling pathway and to elucidate the molecular mechanisms that control the initiation and progression of leaf senescence. In this study, full-length cDNAs of three receptor-like protein kinase genes, designated rlpkl, rlpk2 and rlpk3, were cloned from artificially-induced senescent soybean (Glycine max L.) primary leaves (GenBank accession AY687390, AY687391, AF338813). The deduced amino acid sequences indicated that they belonged to a receptor-like kinase family. Each of rlpkl and rlpk2 encodes a leucine-rich repeat (LRR) receptor-like protein kinase. They both comprise a typical signal peptide, several LRR motifs, a single-pass transmembrane domain, and a cytoplasmic protein kinase domain. No typical extracellular domain of RLPK3 was predicted. Organ-specific expression pattern analysis by reverse-transcription polymerase chain reaction (RT-PCR) revealed higher expression levels of the three genes in cotyledons, roots and flowers. Phylogenetic analysis indicated that RLPK1 and RLPK2 belonged to an independent branch, whereas RLPK3 shared common nodes with several known RLKs responding to ablotic and biotic stresses. The evident alternations of expression profiles of rlpkl and rlpk2 induced by the artificial senescence-inducing treatment implied involvements of these two RLKs in regulating soybean leaf senescence.

关 键 词:gene expression Glycine max: leaf senescence leucine-rich repeat phylogenesis analysis receptor-like kinase. 

分 类 号:Q949[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象