检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学计算机与软件学院,太原030024
出 处:《计算机工程与应用》2006年第34期169-171,共3页Computer Engineering and Applications
摘 要:目前频繁闭合项目集挖掘算法有很多,例如CLOSET[1]。CLOSET以FP-Growth为基础,采用FP-Tree来表示模式支持集,通过深度优先搜索来挖掘频繁闭合模式。其困难是,递归构造“条件FP-Tree”的CPU开销和存储开销很大。为解决上面的问题,论文提出一种基于FP-Tree和COFI-Tree的频繁闭合项目集挖掘算法,在该算法中引用了COFI-Tree结构,COFI-Tree无需递归地构造“条件FP-Tree”,并且某一时刻只有一个频繁项的COFI-Tree在内存,所以大大减少了内存消耗。通过实验证明:当挖掘大型数据库时,在执行时间方面,该算法比其它算法更有效。There are many mining algorithms about frequent closed itemsets,such as CLOSET.The CLOSET algorithm based on FP-Growth.It denotes pattern support set by FP-Tree and mines frequent closed itemsets through depth-first approach.But this algorithm has some problems,it builds conditional FP-Tree recursively so that it requires more memory and CPU resources.To solve this problem,this paper proposes a frequent closed itemsets mining algorithm based on FP-tree and COFI-tree and adopts COFI-Tree in this algorithm.The COFI-Tree doesn't need to build conditional FP-Tree recursively.There is only one COFI-Tree in memory at a time,therefore,this new mining algorithm reduces memory usage.The experiment shows that this approach outperforms similar state-of-the-art algorithms when mining extremely large datasets in terms of execution time.
关 键 词:频繁闭合项目集 FP-TREE COFI-Tree
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145