奇异k-紧整数无限族  被引量:1

Infinite Families of Singular K-tight Integers

在线阅读下载全文

作  者:陈协彬[1] 

机构地区:[1]漳州师范学院数学与信息科学系,福建漳州363000

出  处:《漳州师范学院学报(自然科学版)》2006年第4期1-6,共6页Journal of ZhangZhou Teachers College(Natural Science)

基  金:福建省自然科学基金(A0510021)

摘  要:设n,s1,s2是3个正整数,使得s1<s2<n,gcd(n,s1,s2)=1.双环网G(n;s1,s2)是个有向图,其结点集为V={0,1,2,L,n?1},其弧集为A={i→i+s1(modn),i→i+s2(modn)|i∈V},s1和s 2称为步长.设d(n;s1,s2)为双环网G(n;s1,s2)的直径.令d(n)=min{d(n;s1,s2)|s1<s2<n},d 1(n)=min{d(n;1,s)|1<s<n}.已知d 1(n)≥d(n)≥?3n??2=lb(n).若d(n;s1,s2)=d(n)=lb(n)+k(k≥0),则称G(n;s1,s2)是个k-紧优的双环网.虽然等式d 1(n)=d(n)对于无限多个整数n成立,但也存在无限多个整数n使得d 1(n)>d(n),这样的n称为奇异整数.若d 1(n)>d(n)=lb(n)+k,k≥0,则这样的n称为奇异k-紧整数.本文给出构造奇异k-紧整数无限族的方法,并对于k=1,2,L,20,构造出这样的无限族.Let n, s1, s2 be three positive integers, where s1 〈 s2 〈 n and gcd(n,s1,s2)=1. A double loop network G(n;s1,s2) is a digraph with its vertex set V= {0,1,2,…,n-1} and its arc set A ={ i→i+s1(mod n), i→ i+s2(mod n)|i∈ V}, s1 and s2 arecalleditssteps. Letd (n;s1,s2) bethediameterof G(n;s1,s2)andlet d(n) = min{d(n;s1,s2)| s1 〈 s2 〈 n}, d1 (n) = min{d(n;1,s) | 1 〈 s 〈 n}. It was known that d1 (n) ≥ d(n)≥|√3n|-2 = lb(n) . If d(n; s1, s2 ) = d(n) = lb(n) + k, k ≥ 0, then G(n; s1, s2 ) is called a k -tight optimal double loop network. Although the identity d1 (n) = d(n) holds for infinite integers n, there are also infinite integers n with d1 (n) 〉 d(n), these integers are called singular. If d1 (n) 〉 d(n) = lb(n) + k, k ≥ 0, then the integer n is called singular k -tight. In this paper, we present a method for generating infinite families of singular k -tight integers and generate them, for k = 1,2,……20.

关 键 词:互连网络 双环网 直径 k-紧优 奇异整数 

分 类 号:O156.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象