Open Manifolds with Nonnegative Ricci Curvature and Large Volume Growth  

Open Manifolds with Nonnegative Ricci Curvature and Large Volume Growth

在线阅读下载全文

作  者:XU Sen-lin SONG Bing-yu 

机构地区:[1]Department of Mathematics, Central China Normal University, Wuhan 430079, China

出  处:《Chinese Quarterly Journal of Mathematics》2006年第4期475-481,共7页数学季刊(英文版)

基  金:supported by the NNsF of china(10371047)

摘  要:in this paper,we prove that a complete n-dimensional Riemannian manifold with nonnegative kth-Ricci curvature, large volume growth has finite topological type provided that lim r→∞{(vol[B(p.r]/ωnrn-αM)rk(n-1)/k+1(1-α/2)}≤for some COllstant ε〉0 We also prove that a conlplete Riemannian manifold with nonnegative kth-Ricci curvature and undler some pinching conditions is diffeomorphic to R^n.

关 键 词:Excess function large volume growth nonnegative kth-Ricci curvature 

分 类 号:O189.31[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象