基于模糊加权的动态自适应分支预测算法研究  

Research on Adaptive Dynamic Branch Prediction Algorithm Based on Fuzzy Weight

在线阅读下载全文

作  者:焦永[1] 赵锐[1] 康建华[1] 陈跃跃[2] 

机构地区:[1]军事交通学院,天津300161 [2]国防科学技术大学计算机学院,长沙410073

出  处:《系统仿真学报》2006年第12期3390-3392,共3页Journal of System Simulation

基  金:自然科学基金项目(60376018)

摘  要:分支预测技术一直以来是计算机体系结构、微处理器设计的研究重点。目前分支预测的研究集中在动态分支预测技术,采用学科交叉的观点,提出新的预测算法。对自适应动态分支预测进行改进,引入了模糊加权的机制,对分支历史的每一位加不同的权值,并利用调整因子动态改变权值,由模糊推理得出预测结果。SimpleScalar的模拟结果表明,这种模糊加权的动态自适应算法比经典的gshare预测算法预测失效率低2%。Branch prediction technology is one of the most important field in the research of computer architecture and microprocessor. The research on branch prediction focuses on dynamic branch prediction. Many new prediction algorithms have been raised based on the merge of different subject, The adaptive dynamic branch prediction mechanism has been improved and fuzzy weight mechanism has been introduced. Every bit of the BHR has a different weight and dynamically changed by a adjust gene. The prediction result was given through fuzzy consequence. The result of SimpleScalar simulation shows that the miss prediction rate of dynamic branch prediction algorithm based on fuzzy weight is 2% lower than the classical gshare prediction mechanism.

关 键 词:分支预测 模糊加权 调整因子 模拟器 

分 类 号:TP303[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象