检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科学技术大学计算机学院,长沙410073
出 处:《计算机研究与发展》2006年第12期2124-2130,共7页Journal of Computer Research and Development
基 金:国家"八六三"高技术研究发展计划基金项目(2003AA111020;2003AA115210;2003AA115410;2004AA112020)~~
摘 要:为提高海量数据库系统的查询效率,围绕海量数据库系统中的聚集查询技术,把通常应用于小型数据库查询的语义缓存技术拓展到海量数据库的聚集查询中·首先研究了面向聚集查询的语义缓存形式化描述,在此基础上讨论了利用缓存处理查询的条件并对查询匹配进行了分类,提出并实现了包含匹配判定算法和相交匹配判定算法,最后给出了相应的实验结果·在某大型实际工程中的应用表明上述判定算法是有效的·queries are pervasive in massive database applications, whose execution tends to be time consuming and costly. Therefore promotion of their efficiency will largely improve the performance of the system. Semantic cache is a novel scheme for aiding query evaluation that reuses the results of previously answered queries. But little work has been done on semantic cache involving aggregate queries. This is a limiting factor in its applicability and it is mostly used in small scale database applications. In order to utilize semantic cache in massive database applications, it is necessary to extend semantic cache to support aggregate query, in this paper, query matching is identified as a foundation for answering query using semantic caches. First, a formal semantic cache model is proposed, which supports aggregate query and provides the basis for the whole research. Then the condition of query matching is presented and query matching is classified. Next, two algorithms are proposed for aggregate query matching. These two algorithms are applied to a massive database application project. Its result proves the efficiency of the algorithms.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.152.174