Adjacency Preserving Bijection Maps of Hermitian Matrices over any Division Ring with an Involution  被引量:6

Adjacency Preserving Bijection Maps of Hermitian Matrices over any Division Ring with an Involution

在线阅读下载全文

作  者:Li Ping HUANG 

机构地区:[1]School of Mathematics, Changsha University of Science & Technology Changsha 410076, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2007年第1期95-102,共8页数学学报(英文版)

基  金:the National Natural Science Foundation of China Grant,#10271021

摘  要:Let D be any division ring with an involution,Hn (D) be the space of all n × n hermitian matrices over D. Two hermitian matrices A and B are said to be adjacent if rank(A - B) = 1. It is proved that if φ is a bijective map from Hn(D)(n ≥ 2) to itself such that φ preserves the adjacency, then φ^-1 also preserves the adjacency. Moreover, if Hn(D) ≠J3(F2), then φ preserves the arithmetic distance. Thus, an open problem posed by Wan Zhe-Xian is answered for geometry of symmetric and hermitian matrices.Let D be any division ring with an involution,Hn (D) be the space of all n × n hermitian matrices over D. Two hermitian matrices A and B are said to be adjacent if rank(A - B) = 1. It is proved that if φ is a bijective map from Hn(D)(n ≥ 2) to itself such that φ preserves the adjacency, then φ^-1 also preserves the adjacency. Moreover, if Hn(D) ≠J3(F2), then φ preserves the arithmetic distance. Thus, an open problem posed by Wan Zhe-Xian is answered for geometry of symmetric and hermitian matrices.

关 键 词:division ring with involution hermitian inatrix ADJACENCY geometry of matrices 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象