检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Li Ping HUANG
机构地区:[1]School of Mathematics, Changsha University of Science & Technology Changsha 410076, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2007年第1期95-102,共8页数学学报(英文版)
基 金:the National Natural Science Foundation of China Grant,#10271021
摘 要:Let D be any division ring with an involution,Hn (D) be the space of all n × n hermitian matrices over D. Two hermitian matrices A and B are said to be adjacent if rank(A - B) = 1. It is proved that if φ is a bijective map from Hn(D)(n ≥ 2) to itself such that φ preserves the adjacency, then φ^-1 also preserves the adjacency. Moreover, if Hn(D) ≠J3(F2), then φ preserves the arithmetic distance. Thus, an open problem posed by Wan Zhe-Xian is answered for geometry of symmetric and hermitian matrices.Let D be any division ring with an involution,Hn (D) be the space of all n × n hermitian matrices over D. Two hermitian matrices A and B are said to be adjacent if rank(A - B) = 1. It is proved that if φ is a bijective map from Hn(D)(n ≥ 2) to itself such that φ preserves the adjacency, then φ^-1 also preserves the adjacency. Moreover, if Hn(D) ≠J3(F2), then φ preserves the arithmetic distance. Thus, an open problem posed by Wan Zhe-Xian is answered for geometry of symmetric and hermitian matrices.
关 键 词:division ring with involution hermitian inatrix ADJACENCY geometry of matrices
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171