检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林克芝
机构地区:[1]Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
出 处:《Journal of Wuhan University of Technology(Materials Science)》2006年第4期60-63,共4页武汉理工大学学报(材料科学英文版)
基 金:Funded by the National Basic Research Programof China( No.2003CB61570)
摘 要:A chemical deposition was supposed to be an effwient method in preparation of nano-sized Sn/ MWNTs. The nanoconmposites of MWNTs and Sn/ MWNTs were both used as anodes of lithium ion battery. The special capacities and coulomb efficiencies of Snl MWNTs were studied by means of electrochemical methods. The coating of Sn on MWNTs observed by TEM was amorphous and nano-sized. The reversible capacity of Sn/ MWNTs , which was much larger than that of MWNTs , was 824 mAh/ g in the 1 st charge and discharge cycle. The coulomb efficiency of Sn/ MWNTs in the 1 st cycle was increased by 16% compared with that of MWNTs. The additional Sn, which was 37wt% of total Sn/ MWNTs' weight, introduced the additional reversible lithiation capacity at least 250 mAh/ g in the 40 charge and discharge cycles. The dispersing degree of Sn on MWNTs was the main reason for the influence of the electrochemical perfomance of the Sn/ MWNTs . Sn/ MWNTs is proved to be a promising candidate as an anode of lithium ion battery.A chemical deposition was supposed to be an effwient method in preparation of nano-sized Sn/ MWNTs. The nanoconmposites of MWNTs and Sn/ MWNTs were both used as anodes of lithium ion battery. The special capacities and coulomb efficiencies of Snl MWNTs were studied by means of electrochemical methods. The coating of Sn on MWNTs observed by TEM was amorphous and nano-sized. The reversible capacity of Sn/ MWNTs , which was much larger than that of MWNTs , was 824 mAh/ g in the 1 st charge and discharge cycle. The coulomb efficiency of Sn/ MWNTs in the 1 st cycle was increased by 16% compared with that of MWNTs. The additional Sn, which was 37wt% of total Sn/ MWNTs' weight, introduced the additional reversible lithiation capacity at least 250 mAh/ g in the 40 charge and discharge cycles. The dispersing degree of Sn on MWNTs was the main reason for the influence of the electrochemical perfomance of the Sn/ MWNTs . Sn/ MWNTs is proved to be a promising candidate as an anode of lithium ion battery.
关 键 词:multi-walled carbon nanotubes ( MWNTs ) deposition NANOCOMPOSITES lithium ion battery tinbased materials
分 类 号:TB383.1[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117