检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学电气工程学院,湖北省武汉市430072 [2]广东电网公司佛山供电局,广东省佛山市528000
出 处:《中国电机工程学报》2006年第23期158-162,共5页Proceedings of the CSEE
摘 要:采用有限元方法对HVDC单极离子流场进行迭代求解,在采取一定近似条件的情况下,将描述高压直流线路周围场分布的三阶非线性偏微分方程分解为对泊松方程和电流连续性方程的分别求解。在给定空间电荷密度初值后,不断迭代求解并根据每一步结果对空间电荷密度修正直至收敛。讨论了计算中需要考虑的若干问题,舍弃了Deutsch假设,并用更符合实际的导体表面场强经验公式代替Kaptzov假设,提出一种空间电荷密度更新公式。最后用具有解析解的同轴圆筒电极问题对该算法进行了验证,并与相关HVDC模型实验数据进行比较,得到了较满意的结果。该方法可适用于HVDC单极离子流场的计算分析。Unipolar ionized field around high voltage direct current(HVDC) was solved iteratively with finite element method. Under certain approximate conditions, computation of the third-order nonlinear partial differential equation discribing the field was separated into iterative calculation of both Poisson and current continuity equations. After providing an initial value of charge density throughout the interested region, results can be obtained by updating charge density after each iterative solution until convergence. Several problems related to the computation were discussed, Deutsch assumption was waived and Kaptzov assumption was replaced by: an empirical formula; an update formula for charge density was presented. Both known analytical and experimental results were compared with those obtained by the method, and satisfactory agreement was obtained. The method presented is applicable for the analysis of HVDC unipolar ionized field.
分 类 号:TM726[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.78