检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜燕[1] 霍治国[1] 李世奎[1] 柏秦凤[1]
出 处:《自然灾害学报》2006年第6期109-113,共5页Journal of Natural Disasters
基 金:中国气象局预测减灾应用技术开发推广项目资助(CMATG2005Z02)
摘 要:选择上年1月至当年4月为预报时段,采用预报因子膨化技术,将大气环流特征量按月依次组合成不同时段,计算出不同膨化时段的74项大气环流特征量距平值。从这些值中选出与全国小麦条锈病发病面积率距平相关显著的关键时段关键环流因子,建立了全国小麦条锈病发病面积率距平预报模型Ⅰ。与未采用因子膨化技术建立的预报模型Ⅱ相比,模型I的预报准确率有显著的提高。同时发现,大气环流特征量与全国小麦条锈病发生流行之间存在着很好的相关性。By using predictor puffing method, this paper calculated and analyzed the anomalies of 74 atmospheric circulation characteristics during various periods which were puffed from last January to April of this year. The key atmospheric circulation factors and corresponding key periods, which were significantly related to incidence area rate anomaly of wheat stripe rust, were selected to establish forecasting model Ⅰ which can predict the incidence area rate anomaly of wheat stripe rust. In contrast with forecasting model Ⅱwithout predictor puffing, the prediction accuracy of forecasting model Ⅰis greatly enhanced. There is a remarkable relation between 74 atmospheric circulation characteristics and wheat stripe rust incidence.
关 键 词:小麦条锈病 大气环流特征量 因子膨化 发病面积率预报
分 类 号:S165.28[农业科学—农业气象学] S435.121.42[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33