检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘秋生[1] 濮存斌[1] 沈孟育[1] 王保国[1]
机构地区:[1]清华大学
出 处:《空气动力学学报》1996年第3期329-334,共6页Acta Aerodynamica Sinica
摘 要:本文提出了求解平面翼型亚、跨声速绕流的一个新方法。引入流函数和VonMises变换后,亚、跨声速绕机翼无旋流动的基本方程组被化为以流线纵坐标y为未知量的单个二阶偏微分方程──流线控制方程.并通过变换将物理平面上的无限域变为计算平面上有限的矩形域,而后在计算平面采用有限差分线松弛迭代法求解。作为算例,计算了对称翼型NACA0012-34和非对称翼型NACA4412的亚、跨声速有攻角绕流,所得数值结果与实验数据吻合良好。该法具有程序简单、大大节省内存和机时、收敛快等特点。A new method of solution of subsonic and transonic flows about airfoils is proposed in this paper. After the introduction of the stream function and von Mises transformation, the original equations of the flows are reduced into a single partial differential equation of order two,streamline governing equation. And the infinite solution region in the physical plane is transformed into a finite rectangular one in the computational plane. Then the equation is numerically solved by use of the finite difference method and line- relaxation iteration. The sub-and tran- sonic flows around airfoils NACA0012-34 and NACA4412 at an attack angle are calculated. The numerical results agree well with the experimental data. The numerical experiments show that the present method has advantages in simplicity, memory and CPU time saving and rapid convergence.
分 类 号:V211.412[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28