单样本多姿态人脸识别研究  被引量:7

Various pose face recognition with one front training sample

在线阅读下载全文

作  者:张生亮[1] 

机构地区:[1]山西财经大学信息管理学院

出  处:《计算机应用》2006年第12期2851-2853,共3页journal of Computer Applications

基  金:国家自然科学基金资助项目(60472060;60503026)

摘  要:对如何用单幅正面人脸图像进行训练,待识别图像具有多种姿态变化的人脸识别问题进行了研究。人脸识别算法的识别率常与每人的训练样本数正相关。但在实际应用中,要求每人提供多幅图像并不合理。通过增加虚拟图像提高识别率,给出了一种模拟人脸姿态改变后的近似图像的简单有效的算法。在FERET人脸库上的实验表明,该文提出的近似图像对提高识别率作用显著,最好识别率提高了28·2%。Almost all algorithms for face recognition have tight relationship with the images number of each person. The recognition rate increases with the increasing training number of each class. But in applications, it is not practical to ask for many training images from each person. A new method, which can generate the simulated images of face after rotating an angle, was proposed. It generalized the method of Fisherfaces and uncorrelated image projection diseriminant analysis to one sample per person. The recognition rates of Principal Component Analysis ( PCA), Fisherfaces, and Two dimension's PCA (2DPCA) were also studied. The experimental results on FERET face-databases indicate that after adding virtual images, the recognition rates increase greatly, and the best recognition rate has improved by 28.2%.

关 键 词:人脸识别 FISHER脸 虚拟样本 图像投影鉴别分析 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象