检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Metallurgical Science and Engineering, Central South University [2]School of Metallurgical and Ecological Engineering, Beijing University of Science and Technology
出 处:《Journal of Central South University of Technology》2006年第6期618-623,共6页中南工业大学学报(英文版)
基 金:Project(50204001) supported by the National Natural Science Foundation of China
摘 要:Nanometer Ni0.5Zn0.5Fe2O4 powders with spinel phase were prepared by the hydrothermal method using purified FeSO4 solution from sodium jarosite's slag as materials. The results show that the spinel phase of Ni0.5Zn0.5Fe2O4 powders begins to form at a relatively low temperature (130 ℃) and a shorter holding time (1 h) when pH=8. The crystallization kinetics equation at 200℃ is ln[-ln(1-x)] =-0.78+0.951n t. The growth activation energy of Ni0.5Zn0.5Fe2O4 grains is 41.6 kJ/moL in hydrothermal synthesis process. With the increase of sintering temperature, the density and diameter shrinkage of ferrite circulus increase, whereas its pores decrease. The results of magnetic measurements show that saturation magnetic flux density Bs increases and the coercivity Hc decreases with the increase of their sintering temperature. Magnetic parameters of all the investigated samples satisfy the character demand of high Bs, low Br and low Hc of soft magnetic ferrite materials.Nanometer Ni0.5Zn0.5Fe2O4 powders with spinel phase were prepared by the hydrothermal method using purified FeSO4 solution from sodium jarosite’s slag as materials. The results show that the spinel phase of Ni0.5Zn0.5Fe2O4 powders begins to form at a relatively low temperature (130 ℃) and a shorter holding time (1 h) when pH=8. The crystallization kinetics equation at 200 ℃ is ln[?ln(1?x)]=?0.78+0.95ln t. The growth activation energy of Ni0.5Zn0.5Fe2O4 grains is 41.6 kJ/moL in hydrothermal synthesis process. With the increase of sintering temperature, the density and diameter shrinkage of ferrite circulus increase, whereas its pores decrease. The results of magnetic measurements show that saturation magnetic flux density Bs increases and the coercivity Hc decreases with the increase of their sintering temperature. Magnetic parameters of all the investigated samples satisfy the character demand of high Bs, low Br and low Hc of soft magnetic ferrite materials.
关 键 词:sodium jarosite hydrothermal synthesis Ni-Zn ferrite NANOPARTICLE
分 类 号:TG113[金属学及工艺—物理冶金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170