检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学电气信息学院,四川省成都市610065
出 处:《电网技术》2006年第24期68-72,共5页Power System Technology
基 金:国家自然科学基金资助项目(50595412)。~~
摘 要:以提高动态状态估计精度为目标,采用离散粒子群优化(discreteparticleswarmoptimization,DPSO)算法对同步相量测量单元(phsormeasurementunit,PMU)的配置点进行优化。该方法克服了传统解析优化方法难以适应不连续目标函数和不连通约束域等情况的缺点,同时,在配置有限PMU的情况下使PMU量测量发挥最大效益。最后对基于扩展Kalman滤波算法的动态状态估计模型进行仿真,证明了经DPSO优化后的配置与随机配置相比最大可能地利用了PMU的高精度量测信息,充分发挥了PMU量测的优点,大大提高了动态状态估计的精度。To improve the accuracy of dynamic state estimation, the discrete particle swarm optimization (DPSO) algorithm is adopted to optimize the placement of phasor measurement unit (PMU). This method can overcome the defects of traditional analytical optimization methods: they are hard to suit the conditions of discontinuous objective function and disconnected constrained domain. At the same time, the quantities measured by PMU can fully give play to maximum advantage while limited PMUs are placed. The dynamic state estimation model based on extended Kalman filter theory is simulated. It is proved by simulation results that comparing with random placement of PMU, the proposed PMU placement optimized by DPSO can utilize the measurement information with high accuracy as much as possible and the advantage of measurement by PMU can be fully developed, thus the accuracy of dynamic state estimation can be evidently improved.
关 键 词:相量测量单元(PMU) 动态状态估计 离散粒子群 优化算法 配置 电力系统
分 类 号:TM734[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145