检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG Peng-cheng FU Fang-wei CHANG Zu-ling
机构地区:[1]School of Mathematical Sciences, Nankai University, Tianjin 300071, China
出 处:《The Journal of China Universities of Posts and Telecommunications》2006年第4期95-97,共3页中国邮电高校学报(英文版)
基 金:the National Natural Science Foundation of China (60172060).
摘 要:Finding good upper bound for the size of m-ary t-symmetric error correcting codes (t-sEC/AUED codes) codes is the main problem in the coding theory of m-ary t-sEC/AUED codes. Based on the method of Lagrange multipliers, We shall derive an upper bound on the size of m-ary t-sEC/AUED in this paper. Some examples achieved this upper bound are also given in this paper.Finding good upper bound for the size of m-ary t-symmetric error correcting codes (t-sEC/AUED codes) codes is the main problem in the coding theory of m-ary t-sEC/AUED codes. Based on the method of Lagrange multipliers, We shall derive an upper bound on the size of m-ary t-sEC/AUED in this paper. Some examples achieved this upper bound are also given in this paper.
关 键 词:magnitude error criterion t-sEC/AUED codes unidirectional error Lagrange multipliers
分 类 号:O236[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249