入侵检测系统中非完备性问题研究  被引量:3

Research on Incomplete Problem in IDS

在线阅读下载全文

作  者:孙夫雄[1] 黄天戍[2] 

机构地区:[1]中南财经政法大学信息学院,武汉430073 [2]武汉大学电子信息学院,武汉430072

出  处:《计算机工程》2007年第1期28-30,共3页Computer Engineering

基  金:中南财经政法大学引进人才科研启动金资助项目(00008673);公安部科研项目(200342-823-01)

摘  要:提出了一种基于免疫原理的自适应入侵检测模型IAIDM,由于训练集非完备性问题是当前入侵检测系统遭遇到的最常见的问题,因此该文结合IAIDM模型特点,对因时间因素而导致训练集非完备性问题进行了深入分析,提出了增量式动态更新算法IA,实验结果显示IA能增量式地动态更新发生变化的局部样本空间而不必更新整个样本空间,保证了IAIDM能迅速适应网络环境的变化。ID model-IAIDM(Immune-based Adaptive Intrusion Detection Model) is put forward. Because current IDS usually has a problem of incomplete training sets, this page has done the deep researches on the problem caused by the limit of training time with the feature of IAIDM. Based on it, an incremental algorithm(IA) is put forward. The experiment results demonstrate IA can update local selfspace that has changed incrementally and dynamically instead of the whole space so that IAIDM can adjust itself to the current network environment quickly.

关 键 词:入侵检测 自然免疫系统 非完备性 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象