ON KARUSH-KUHN-TUCKER POINTS FOR A SMOOTHING METHOD IN SEMI-INFINITE OPTIMIZATION  

ON KARUSH-KUHN-TUCKER POINTS FOR A SMOOTHING METHOD IN SEMI-INFINITE OPTIMIZATION

在线阅读下载全文

作  者:Oliver Stein 

机构地区:[1]Department o.f Mathematics-C, RWTH Aachen University, Germany

出  处:《Journal of Computational Mathematics》2006年第6期719-732,共14页计算数学(英文)

摘  要:We study the smoothing method for the solution of generalized semi-infinite optimization problems from (O. Stein, G. Still: Solving semi-infinite optimization problems with interior point techniques, SIAM J. Control Optim., 42(2003), pp. 769-788). It is shown that Karush-Kuhn-Tucker points of the smoothed problems do not necessarily converge to a Karush-Kuhn-Tucker point of the original problem, as could be expected from results in (F. Facchinei, H. Jiang, L. Qi: A smoothing method for mathematical programs with equilibrium constraints, Math. Program., 85(1999), pp. 107-134). Instead, they might merely converge to a Fritz John point. We give, however, different additional assumptions which guarantee convergence to Karush-Kuhn:Tucker points.We study the smoothing method for the solution of generalized semi-infinite optimization problems from (O. Stein, G. Still: Solving semi-infinite optimization problems with interior point techniques, SIAM J. Control Optim., 42(2003), pp. 769-788). It is shown that Karush-Kuhn-Tucker points of the smoothed problems do not necessarily converge to a Karush-Kuhn-Tucker point of the original problem, as could be expected from results in (F. Facchinei, H. Jiang, L. Qi: A smoothing method for mathematical programs with equilibrium constraints, Math. Program., 85(1999), pp. 107-134). Instead, they might merely converge to a Fritz John point. We give, however, different additional assumptions which guarantee convergence to Karush-Kuhn:Tucker points.

关 键 词:Generalized semi-infinite optimization Stackelberg game Constraint qualifi-cation SMOOTHING NCP function. 

分 类 号:O221[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象