检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Oliver Stein
机构地区:[1]Department o.f Mathematics-C, RWTH Aachen University, Germany
出 处:《Journal of Computational Mathematics》2006年第6期719-732,共14页计算数学(英文)
摘 要:We study the smoothing method for the solution of generalized semi-infinite optimization problems from (O. Stein, G. Still: Solving semi-infinite optimization problems with interior point techniques, SIAM J. Control Optim., 42(2003), pp. 769-788). It is shown that Karush-Kuhn-Tucker points of the smoothed problems do not necessarily converge to a Karush-Kuhn-Tucker point of the original problem, as could be expected from results in (F. Facchinei, H. Jiang, L. Qi: A smoothing method for mathematical programs with equilibrium constraints, Math. Program., 85(1999), pp. 107-134). Instead, they might merely converge to a Fritz John point. We give, however, different additional assumptions which guarantee convergence to Karush-Kuhn:Tucker points.We study the smoothing method for the solution of generalized semi-infinite optimization problems from (O. Stein, G. Still: Solving semi-infinite optimization problems with interior point techniques, SIAM J. Control Optim., 42(2003), pp. 769-788). It is shown that Karush-Kuhn-Tucker points of the smoothed problems do not necessarily converge to a Karush-Kuhn-Tucker point of the original problem, as could be expected from results in (F. Facchinei, H. Jiang, L. Qi: A smoothing method for mathematical programs with equilibrium constraints, Math. Program., 85(1999), pp. 107-134). Instead, they might merely converge to a Fritz John point. We give, however, different additional assumptions which guarantee convergence to Karush-Kuhn:Tucker points.
关 键 词:Generalized semi-infinite optimization Stackelberg game Constraint qualifi-cation SMOOTHING NCP function.
分 类 号:O221[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7