检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Oleg Burdakov Anders Grimvall Oleg Sysoev
机构地区:[1]Department of Mathematics, LinkSping University, SE-58183 Link6ping, Sweden
出 处:《Journal of Computational Mathematics》2006年第6期771-790,共20页计算数学(英文)
摘 要:Monotonic regression (MR) is a least distance problem with monotonicity constraints induced by a partiaily ordered data set of observations. In our recent publication [In Ser. Nonconvex Optimization and Its Applications, Springer-Verlag, (2006) 83, pp. 25-33], the Pool-Adjazent-Violators algorithm (PAV) was generalized from completely to partially ordered data sets (posets). The new algorithm, called CPAV, is characterized by the very low computational complexity, which is of second order in the number of observations. It treats the observations in a consecutive order, and it can follow any arbitrarily chosen topological order of the poset of observations. The CPAV algorithm produces a sufficiently accurate solution to the MR problem, but the accuracy depends on the chosen topological order. Here we prove that there exists a topological order for which the resulted CPAV solution is optimal. Furthermore, we present results of extensive numerical experiments, from which we draw conclusions about the most and the least preferable topological orders.Monotonic regression (MR) is a least distance problem with monotonicity constraints induced by a partiaily ordered data set of observations. In our recent publication [In Ser. Nonconvex Optimization and Its Applications, Springer-Verlag, (2006) 83, pp. 25-33], the Pool-Adjazent-Violators algorithm (PAV) was generalized from completely to partially ordered data sets (posets). The new algorithm, called CPAV, is characterized by the very low computational complexity, which is of second order in the number of observations. It treats the observations in a consecutive order, and it can follow any arbitrarily chosen topological order of the poset of observations. The CPAV algorithm produces a sufficiently accurate solution to the MR problem, but the accuracy depends on the chosen topological order. Here we prove that there exists a topological order for which the resulted CPAV solution is optimal. Furthermore, we present results of extensive numerical experiments, from which we draw conclusions about the most and the least preferable topological orders.
关 键 词:Quadratic programming Large scale optimization Least distance problem Monotonic regression Partially ordered data set Pool-adjacent-violators algorithm.
分 类 号:O221[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117