DATA PREORDERING IN GENERALIZED PAV ALGORITHM FOR MONOTONIC REGRESSION  

DATA PREORDERING IN GENERALIZED PAV ALGORITHM FOR MONOTONIC REGRESSION

在线阅读下载全文

作  者:Oleg Burdakov Anders Grimvall Oleg Sysoev 

机构地区:[1]Department of Mathematics, LinkSping University, SE-58183 Link6ping, Sweden

出  处:《Journal of Computational Mathematics》2006年第6期771-790,共20页计算数学(英文)

摘  要:Monotonic regression (MR) is a least distance problem with monotonicity constraints induced by a partiaily ordered data set of observations. In our recent publication [In Ser. Nonconvex Optimization and Its Applications, Springer-Verlag, (2006) 83, pp. 25-33], the Pool-Adjazent-Violators algorithm (PAV) was generalized from completely to partially ordered data sets (posets). The new algorithm, called CPAV, is characterized by the very low computational complexity, which is of second order in the number of observations. It treats the observations in a consecutive order, and it can follow any arbitrarily chosen topological order of the poset of observations. The CPAV algorithm produces a sufficiently accurate solution to the MR problem, but the accuracy depends on the chosen topological order. Here we prove that there exists a topological order for which the resulted CPAV solution is optimal. Furthermore, we present results of extensive numerical experiments, from which we draw conclusions about the most and the least preferable topological orders.Monotonic regression (MR) is a least distance problem with monotonicity constraints induced by a partiaily ordered data set of observations. In our recent publication [In Ser. Nonconvex Optimization and Its Applications, Springer-Verlag, (2006) 83, pp. 25-33], the Pool-Adjazent-Violators algorithm (PAV) was generalized from completely to partially ordered data sets (posets). The new algorithm, called CPAV, is characterized by the very low computational complexity, which is of second order in the number of observations. It treats the observations in a consecutive order, and it can follow any arbitrarily chosen topological order of the poset of observations. The CPAV algorithm produces a sufficiently accurate solution to the MR problem, but the accuracy depends on the chosen topological order. Here we prove that there exists a topological order for which the resulted CPAV solution is optimal. Furthermore, we present results of extensive numerical experiments, from which we draw conclusions about the most and the least preferable topological orders.

关 键 词:Quadratic programming Large scale optimization Least distance problem Monotonic regression Partially ordered data set Pool-adjacent-violators algorithm. 

分 类 号:O221[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象