Oxylipin Pathway in Rice and Arabidopsis  被引量:14

Oxylipin Pathway in Rice and Arabidopsis

在线阅读下载全文

作  者:E. Wassim Chehab John V. Perea Banu Gopalan Steve Theg Katayoon Dehesh 

机构地区:[1]Section of Plant Biology, University of California-Davis, Davis, CA, 95616, USA

出  处:《Journal of Integrative Plant Biology》2007年第1期43-51,共9页植物学报(英文版)

基  金:Supported by UC discovery and NSF grants to KD. Publication of this paper is supported by the National Natural Science Foundation of China (30624808) and Science Publication Foundation of the Chinese Academy of Sciences.Acknowledgements The authors would like to acknowledge G. Raman for performing the jasmonate and aldehyde measurements.

摘  要:Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental Information. The oxylipin pathway Is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxyllpln pathway Induces the de novo synthesis of biologically active metabolltes called "oxyllplns". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxyllpln pathway, allene oxide synthase (AOS) and hydroperoxlde lyase (HPL) are responsible for production of the signaling compounds, jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways In rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights Into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations In monocots and dicots.Plants have evolved complex signaling pathways to coordinate responses to developmental and environmental Information. The oxylipin pathway Is one pivotal lipid-based signaling network, composed of several competing branch pathways, that determines the plant's ability to adapt to various stimuli. Activation of the oxyllpln pathway Induces the de novo synthesis of biologically active metabolltes called "oxyllplns". The relative levels of these metabolltes are a distinct indicator of each plant species and determine the ability of plants to adapt to different stimuli. The two major branches of the oxyllpln pathway, allene oxide synthase (AOS) and hydroperoxlde lyase (HPL) are responsible for production of the signaling compounds, jasmonates and aldehydes respectively. Here, we compare and contrast the regulation of AOS and HPL branch pathways In rice and Arabidopsis as model monocotyledonous and dicotyledonous systems. These analyses provide new Insights Into the evolution of JAs and aldehydes signaling pathways, and the complex network of processes responsible for stress adaptations In monocots and dicots.

关 键 词:ALDEHYDES allene oxide synthase ARABIDOPSIS hydroperoxide lyase JASMONATES oxylipin pathway RICE 

分 类 号:Q946.5[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象