基于微分几何理论和自抗扰控制技术的励磁控制器设计  被引量:18

Excitation control design based on differential geometry theory and active disturbance rejection control

在线阅读下载全文

作  者:马幼捷[1] 王新志[1] 周雪松[1] 

机构地区:[1]天津理工大学,天津300191

出  处:《电工电能新技术》2007年第1期34-37,共4页Advanced Technology of Electrical Engineering and Energy

基  金:国家"九五"重点科技攻关项目(编号:96-A19-05-03)

摘  要:针对仿射非线性系统,通过微分几何坐标变换将系统非线性因素转换到含有控制输入的状态方程中。由于微分几何方法坐标变换本身是精确无误的,所以转换后的系统中,线性部分是精确的;系统参数的不确定、模型的不精确最终反映到转换后的非线性部分。利用自抗扰技术中的扩张状态观测器观测该部分的非线性摄动,通过反馈将其线性化并消除扰动。推导了单机无穷大系统的非线性励磁控制规律,在PSASP上进行仿真试验。理论论证和仿真试验证明该方案提高了非线性励磁控制的鲁棒性。Uncertain nonlinear systems with unknown parameters axe considered in this paper. At first a geometric coordinate transform are adopted. For the affine nonlinear system, the nonlinear element can be transformed into the state equation that contains control input by differential geometry method. Owing to the accuracy of differential geometry, in the transformed system, the linear parts are accurate, while the inaccuracy of model or parameter appears in the nonlinear parts. ADRC (Active Disturbance Rejection Control) proposed an innovative strategy to overcome uncertainty problem. We use Extended State Observer to estimate the perturbations and eliminate them by feedback. For the linear system, the control rules can be got via the mature linear system theory such as optimal theory. Based on that, the excitation control rules of one machine and infinite bus system are presented. The simulation carried out on PSASP shows that the presented method improves the robust of excitation control.

关 键 词:非线性励磁控制 自抗扰技术 计算机仿真 

分 类 号:TM71[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象