应用改进GENOCOPⅢ算法求解无功优化问题  

Application of advanced GENOCOPⅢ algorithm to reactive power optimization

在线阅读下载全文

作  者:张柯[1] 侯世英[1] 吕厚余[1] 王凌谊[1] 

机构地区:[1]重庆大学高电压与电工新技术教育部重点实验室,重庆400044

出  处:《电工电能新技术》2007年第1期60-63,共4页Advanced Technology of Electrical Engineering and Energy

摘  要:本文将GENOCOPⅢ(Genetic algorithm for Numerical Optimization of Constrained Problems)算法应用于以网损最小化为优化目标的电力系统无功优化问题中。该算法是一种求解含非线性约束的数值优化问题的协进化遗传算法。算法保持两个不同的种群并且使用不可行个体修正法来搜索可行点。文章最后以IEEE14节点系统为优化对象进行了计算,证明了GENOCOPⅢ遗传算法具有良好的性能。In this paper, GENOCOP Ⅲ (Genetic algorithm for Numerical Optimization of Constrained Problems) algorithm is applied to reactive power optimization (RPO). The GENOCOPⅢ algorithm is a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. The algorithm maintains two separate populations. The first population consists of the so-called search points from S which satisfy linear constraints of the problem (as in the original Genocop system), the second population consists of the so-called reference points. These points are fully feasible. This algorithm uses the method of repairing infeasible individuals to search the feasible points. The proposed algorithm is applied to IEEE 14-bus system; the numerical results of the simulation demonstrate the validity and effectiveness of this algorithm.

关 键 词:电力系统 无功优化 遗传算法 演化策略 

分 类 号:TM762[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象