检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2007年第1期95-97,共3页journal of Computer Applications
基 金:河南省科技攻关资助项目(324220066)
摘 要:孤立点检测一直是知识发现(KDD)中一个活跃的领域,如信用卡欺诈,入侵检测等。在这些应用领域中研究孤立点的异常行为能够发现隐藏在数据集中更有价值的知识。提出了一个新的度量LDC(局部偏差系数)因子和基于LDC的孤立点挖掘的算法LDC-m ine。实验证明:该算法能够有效地检测出孤立点。Outlier detection has always been a hot research field in Knowledge Discovery in Databases (KDD). Finding the rare abnormal behaviors or the outliers can be more interesting than finding the common patterns like credit card fraud, intrusion detection, etc. This paper provided a new Local deviation coefficient (LDC) factor and an algorithm for mining outlier based LDC-mine. The experiment shows that LDC-mine has higher efficiency of detecting outliers.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104